|
|
PCSK3 inhibits cell migration by regulating the inflammatory response of vascular smooth muscle cells and the expression of cell phenotype transformation markers |
CHEN Naxia, QI Miaomiao, LIN Hengxiu, HUANG Shan |
The First Affiliated Hospital of Hainan Medical University, Haikou 571001, China |
|
|
Abstract Objective To investigate the effect of Recombinant Proprotein Convertase Subtilisin/Kexin Type 3(PCSK3) on the proliferation and migration of vascular smooth muscle cells. Methods First, the cell model was established by stimulating vascular smooth muscle cells (VSMCs) of mouse with 0, 25, 50, 100 mg/L ox-LDL, and the expression of PCSK3 mRNA was detected by RT-PCR. The atherosclerotic model cells stimulated by 100 mg/L ox-LDL were used as the model group, VSMCs were divided into NC group (0 mg/L ox-LDL stimulated VSMCs+scramble siRNA, SCR), ox-LDL group (model group+SCR), ox LDL+si-PCSK3 1 # group (model group+si-PCSK3 1 # plasmid) and ox-LDL+si-PCSK3 2 # group (model group+si-PCSK3 2 # plasmid). The proliferation activity of VSMCs in each group was detected by EdU method, and cell migration was observed by Transwell, ELISA kit for detecting IL-1 β, TNF α, IL-6, intercellular adhesion molecule-1(ICAM-1) content, RT-PCR was used to detect the changes of mRNA expression of type I and ⅲ collagen and smooth muscle actin (α-SMA) in SMC cells of each group. Results Under the concentration of 100 mg/L ox-LDL treatment, PCSK3 in VSMCs significantly increased, which can induce the proliferation of VSMCs. Interference with the endogenous expression of PCSK3 can inhibit the migration and proliferation ability of VSMCs stimulated by ox-LDL, reduce the secretion of IL-1 β, TNF α, IL-6, and ICAM-1 levels. Compared with the ox-LDL group, the expression of type I collagen and OPN mRNA was significantly downregulated in the si-PCSK3 treated cell group, while the expression of α-SMA mRNA was significantly upregulated. Conclusion Down-regulation of PCSK3 can attenuate the proliferation and migration of vascular smooth muscle cells, which may be related to the regulation of PCSK3 on intracellular inflammatory response and cell phenotype transformation.
|
Received: 25 July 2023
|
|
|
|
|
Cite this article: |
CHEN Naxia,QI Miaomiao,LIN Hengxiu等. PCSK3 inhibits cell migration by regulating the inflammatory response of vascular smooth muscle cells and the expression of cell phenotype transformation markers[J]. HuNan ShiFan DaXue XueBao(YiXueBan), 2023, 20(5): 16-22.
|
|
|
|
URL: |
http://yxb.hunnu.edu.cn/EN/ OR http://yxb.hunnu.edu.cn/EN/Y2023/V20/I5/16 |
[1] 陈羽斐, 沈伟, 施海明. 巨噬细胞免疫代谢与动脉粥样硬化的研究进展[J]. 中国动脉硬化杂志, 2020, 230(1): 83-89. [2] Woo SH, Kyung D, Lee SH, et al.TXNIP Suppresses the Osteochondrogenic Switch of Vascular Smooth Muscle Cells in Atherosclerosis[J]. Circ Res, 2023, 132(1): 52-71. [3] Durham AL, Speer MY, Scatena M, et al.Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness[J]. Cardiovasc Res, 2018, 114(4): 590-600. [4] 吴玉莲, 李昕倡, 李明, 等. 白藜芦醇对PM2.5诱导的血管平滑肌细胞增殖与迁移的影响[J]. 中成药, 2022, 44(7): 2304-2307. [5] Gurung R, Choong AM, Woo CC, et al.Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm[J]. Int J Mol Sci, 2020, 21(17): 6334. [6] Furmanik M, Chatrou M, van Gorp R, et al. Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification[J]. Circ Res, 2020, 127(7): 911-927. [7] 岳茹婧, 马晓莉, 郭新红, 等. 香青兰总黄酮调控Notch1信号通路对ox-LDL诱导的血管平滑肌细胞表型转化的影响[J]. 石河子大学学报 (自然科学版), 2021, 39(2): 252-258. [8] 李彩娟, 赵自刚. 细胞自噬促进血管平滑肌细胞向合成表型转化的作用与机制[J]. 中国病理生理杂志, 2022, 38(2): 358-363. [9] Latini A, De Benedittis G, Colafrancesco S, et al.PCSK3 Overexpression in Sjögren's Syndrome Patients May Be Regulated by rs4932178 SNP in Its Promoter Region and Correlates with IFN-γ Gene Expression[J]. Genes (Basel), 2023, 14(5): 981. [10] Dijk W, Ruppert PMM, Oost LJ, et al.Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes[J]. J Biol Chem.2018, 293(36): 14134-14145. [11] Ren K, Jiang T, Zheng XL, et al.Proprotein convertase furin/PCSK3 and atherosclerosis: New insights and potential therapeutic targets[J]. Atherosclerosis, 2017, 262: 163-170. [12] Zhao G, Yang W, Wu J, et al.Influence of a Coronary Artery Disease-Associated Genetic Variant on FURIN Expression and Effect of Furin on Macrophage Behavior[J]. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1837-1844. [13] 鲍海龙, 廖付军, 方俐, 等. PCSK9对单核巨噬细胞摄取氧化低密度脂蛋白的影响及其机制[J]. 中华心血管病杂志, 2019, 47(5): 367-373. [14] Farina FM, Serio S, Hall IF, et al.The epigenetic enzyme DOT1L orchestrates vascular smooth muscle cell-monocyte crosstalk and protects against atherosclerosis via the NF-κB pathway[J]. Eur Heart J, 2022, 43(43): 4562-4576. [15] Niu N, Xu S, Xu Y, et al.Targeting Mechanosensitive Transcription Factors in Atherosclerosis[J]. Trends Pharmacol Sci, 2019, 40(4): 253-266. [16] 李玉霞, 商瑀家, 宋佳新, 等. 血管平滑肌细胞表型转换与动脉粥样硬化关系的研究进展[J]. 医学研究杂志, 2021, 50(2): 17-19+27. [17] 李丹丹, 梅俊, 周庆兵, 等. 固有免疫介导的炎症反应在动脉粥样硬化发病机制中的研究进展[J]. 中国动脉硬化杂志, 2022, 30(1): 71-76. [18] 张友义, 刘伟娜, 赵慧娜, 等. Furin的生物学功能[J]. 生命的化学, 2019, 39(2): 353-359. [19] 李萍, 惠品晶, 金琳, 等. 抗ICAM-1纳米靶向超声泡识别兔腹主动脉粥样硬化早期炎症的实验研究[J]. 中国动脉硬化杂志, 2020, 28(12): 1042-1047. [20] 王茨, 迟伟群, 姜晓峰. 自身抗体及炎症因子与动脉粥样硬化相关性的研究进展[J]. 中国实验诊断学, 2020, 24(6): 1052-1056. [21] 胡艳红, 杨静, 修成奎, 等. 血管平滑肌细胞表型转化的诱导因素研究进展[J]. 山东医药, 2019, 59(36): 96-100. |
|
|
|