|
|
Fingerprint and preliminary study on the active components and mechanism of Chansu in treating COVID-19 |
ZHANG Yunyu1,2, TANG Zhifeng1,2, SHI Dezhi1,2, GAO Wu feng1, GONG Xiaowen1,2, CHANG Huamei3, SHI Zhenping3, JI Jing1,2, HUANG Shiwen1, CHENG Jianming1,2 |
1. Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China; 2. Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China; 3. Jiangsu Rongzheng Medical Technology Co., Ltd., Nanjing 210008, China |
|
|
Abstract Objective Characterize the chemical constituents from Chansu, establish an HPLC fingerprint. And explore its active components and mechanism in the treatment of COVID-19. Methods The chemical components of Chansu were qualitatively identified with the help of HPLC-Q-TOF/MS. Establish an HPLC fingerprint. Through network pharmacology to analyze the target and pathway. Results Through analysis, 87 chemical components were identified, including alkaloids, bufadienolide, and amino acids and their acylates.10 batches of Chansu HPLC fingerprints were established.17 common peaks were obtained, and the similarity ≥ 0.950. Including 8 identified chromatographic components such as Serotonin hydrochloride, Bufotenine, Bufotalin, Gamabufotalin, Arenobufagin, Bufalin, Cinobufagin, Resibufogenin. Cinobufotalin, 19-oxocinobufotalin and the 8 components identified in the fingerprint are the key components of Chansu to play the role of COVID-19. Including PIK3CA, MAPK1, AKT1 etc, 10 core targets were obtained, involving Coronavirus disease-COVID-19, PI3K-Akt signaling pathway, Thyroid hormone signaling pathway etc. It may play a role by directly inhibiting the virus, improving the immune function and reducing the inflammatory response. Conclusion The established fingerprint can comprehensively characterize the medicinal materials of Chansu. Its main components corresponding to chromatographic peaks are related to the treatment of COVID-19. It laid a foundation for the active components and mechanism of action of Chansu in the treatment of COVID-19. It has reference for the screening of other components in the prevention and treatment of viral infection.
|
Received: 23 November 2022
|
|
|
|
|
[1] 赵琦, 吴莹, 席榕, 等. 中药治疗病毒性肺炎的研究进展[J]. 当代医药论丛, 2017, 15(12): 14-15. [2] 国家药典委员会. 中华人民共和国药典. 一部[M]. 北京: 中国医药科技出版社, 2020: 401-402. [3] 房蕴歌. 以蟾酥为例探讨“TOE”思路下的动物药质量控制内涵研究[D]. 天津: 天津中医药大学, 2020: 78-90. [4] 丁梦磊, 张雯, 张越, 等. 一测多评法测定六神丸中的6个蟾蜍二烯内酯类化合物[J]. 药物分析杂志, 2019, 39(11): 2003-2009. [5] 周成美, 胡晶红, 任鑫, 等. 基于指纹图谱结合多成分定量分析的蟾酥药材质量评价研究[J]. 天然产物研究与开发, 2022, 34(11): 1846-1856. [6] 应金琴. 酒蟾酥及酒乌梢蛇炮制原理研究[D]. 江西: 江西中医药大学, 2021: 5-28. [7] 袁恩. 质谱分子网络技术在三种中药成分差异分析中的应用研究[D]. 江西: 江西中医药大学, 2020: 33-57. [8] Hu F, Chen J, Chen H, et al.Chansu improves the respiratory function of severe COVID-19 patients[J]. Pharmacological Research-Modern Chinese Medicine, 2021, 1: 1-7. [9] 曹鹏, 陈姣, 胡星星. 蟾酥提取物在制备治疗SARS-CoV-2病毒引起的感染性疾病的药物中的应用: 中国, 111437293 A [P].2020-07-24. [10] 杨超, 朱晓钗, 万浩婷, 等. 基于灰色关联分析方法研究炒酸枣仁镇静催眠作用谱效关系[J]. 中草药, 2021, 52(17): 5267-5274. [11] 应金琴, 杨明, 张普照, 等. 蟾酥的炮制历史沿革、化学成分及药理活性研究进展[J]. 中国中药杂志, 2021, 46(14): 3529-3539. [12] 王子月, 王洪兰, 周婧, 等. 利用UPLC-TQ-MS比较蟾酥鲜品和蟾酥商品化学成分[J]. 中国中药杂志, 2015, 40(20): 3967-3973. [13] 徐迪辉. 基于质谱技术对蟾酥中吲哚类生物碱的鉴定及镇痛抗炎活性评价[D]. 南京: 南京中医药大学, 2021: 17-29. [14] Hu Y, Yu Z, Yang Z J, et al.Comprehensive chemical analysis of Venenum Bufonis by using liquid chromatography/electrospray ionization tandem mass spectrometry[J]. J Pharm Biomed Anal, 2011, 56(2): 210-220. [15] Ren W, Han L, Luo M, et al.Multi-component identification and target cell-based screening of potential bioactive compounds in toad venom by UPLC coupled with high-resolution LTQ-Orbitrap MS and high-sensitivity Qtrap MS[J]. Anal Bioanal Chem, 2018, 410(18): 4419-4435. [16] 孙瑜, 蔡媛, 沈冰冰, 等. 基于网络药理学及分子对接研究栀子抗缺血性脑卒中的分子机制[J]. 中成药, 2021, 43(09): 2352-2359. [17] 吕红君, 杨清鑫, 纪雅菲, 等. 十神汤治疗新型冠状病毒肺炎机制的网络药理学探讨[J]. 中药药理与临床, 2020, 36(02): 109-115. [18] 黄强, 汪亚楠, 韩飞, 等. 基于网络药理学的桂枝甘草汤抗失眠作用的潜在机制研究[J]. 湖南中医药大学学报, 2020, 40(04): 452-459. [19] 丘海芯, 甘金月, 王宝林, 等. 仲景名方白头翁汤的指纹图谱及功效关联物质预测分析[J]. 中草药, 2022, 53(06): 1740-1750. [20] Su S, Hua D, Li J P, et al.Modulation of innate immune response to viruses including SARS-CoV-2 by progesterone[J]. Signal Transduct Target Ther, 2022, 7(1): 137. [21] 毛艳, 刘荣昌, 丁曼, 等. 基于网络药理学和指纹图谱的一枝蒿抗乙肝病毒质量标志物预测分析[J]. 天然产物研究与开发, 2022, 34(05): 864-873. [22] Jin Y H, Jeon S, Lee J, et al.Broad Spectrum Antiviral Properties of Cardiotonic Steroids Used as Potential Therapeutics for Emerging Coronavirus Infections[J]. Pharmaceutics, 2021, 13(11): 1839-1865. [23] Reddy D, Kumavath R, Barh D, et al.Anticancer and Antiviral Properties of Cardiac Glycosides: A Review to Explore the Mechanism of Actions[J]. Molecules, 2020, 25(16): 3596-3596. [24] Burkard C, Verheije M H, Haagmans B L, et al.ATP1A1-mediated Src signaling inhibits coronavirus entry into host cells[J]. J Virol, 2015, 89(8): 4434-4448. [25] Zhang L, Zhang X, Zheng J, et al.Depressive symptom-associated IL-1beta and TNF-alpha release correlates with impaired bronchodilator response and neutrophilic airway inflammation in asthma[J]. Clin Exp Allergy, 2019, 49(6): 770-780. |
[1] |
ZHU Mingxin, HUANG Jianliang, XIA Mingkai, PENG Bo, LI Linjun, ZHANG Jianhui, WEN Fang, HU Linlin, LEI Mingsheng. The clinical significance of CAD in patients with severe and critically-severe Omicron infections[J]. HuNan ShiFan DaXue XueBao(YiXueBan), 2023, 20(3): 47-53. |
|
|
|
|